Resonances in the Spring Pendulum: Algorithms for Equivariant Singularity Theory

نویسندگان

  • W. Broer
  • I. Hoveijn
  • G. A. Lunter
  • G. Vegter
چکیده

The spring pendulum in resonance is a model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction can be handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincar e map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Grr obner basis techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity and Stratification Theory Applied to Dynamical Systems

We outline the theory of equivariant transversality for maps equivariant with respect to a compact Lie group. We indicate some applications to generic equivariant bifurcation theory.

متن کامل

Regular and Chaotic Motions of the Parametrically Forced Pendulum: Theory and Simulations

New types of regular and chaotic behaviour of the parametrically driven pendulum are discovered with the help of computer simulations. A simple qualitative physical explanation is suggested to the phenomenon of subharmonic resonances. An approximate quantitative theory based on the suggested approach is developed. The spectral composition of the subharmonic resonances is investigated quantitati...

متن کامل

Subharmonic resonances of the parametrically driven pendulum

A simple qualitative physical explanation is suggested for the phenomenon of subharmonic resonances of a rigid planar pendulum whose axis is forced to oscillate with a high frequency in the vertical direction. An approximate quantitative theory based on the suggested approach is developed. The spectral composition of the subharmonic resonances is investigated quantitatively, and the boundaries ...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Perturbing a Symmetric Resonance: the Magnetic Spherical Pendulum

We consider symmetric 2 degree of freedom Hamiltonian systems which are resonant because of the symmetry, such as the spherical pendulum. Perturbing such a system by breaking the symmetry (e.g. adding a magnetic term) creates bifur-cations in the geometry of the families of periodic orbits, and the aim of this paper is to study this geometry. For brevity, we consider only the cases of symmetry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997